LETTERS TO THE EDITOR

VIBRATIONS OF A BEAM OF NON-UNIFORM CROSS-SECTION TRAVERSED BY A TIME VARYING CONCENTRATED FORCE

R. H. Gutierrez and P. A. A. Laura

Institute of Applied Mechanics (CONICET) and Department of Engineering, Universidad Nacional del Sur, 8000-Bahía Blanca, Argentina
(Received 18 October 1996, and in final form 20 May 1997)

1. INTRODUCTION

The analysis of the dynamic behavior of structural elements traversed by moving forces or masses is certainly a classical problem which has attracted the attention of many researchers. The reader is referred to comprehensive listing of references available in well known textbooks and papers [1-8]. In general the investigations have been motivated by the necessity of evaluating the dynamic behavior of a bridge travelled by a car or of rails travelled by a train.

The present paper, considerable more modest in its scope, deals with the approximate determination of the transverse response of the structural system depicted in Figure 1 as a load

$$
\begin{equation*}
P(t)=P_{0} \mathrm{e}^{-\alpha t} \tag{1}
\end{equation*}
$$

which travels at constant speed, v, along the beam. The beam, of constant width b, is characterized by a parabolically varying thickness given by

$$
\begin{equation*}
h(\bar{x})=h_{m} f(\bar{x})=h_{m}\left[4(\gamma-1)\left(\bar{x}^{2} / L^{2}-\bar{x} / L\right)+\gamma\right], \tag{2}
\end{equation*}
$$

where

$$
\gamma=h(0) / h_{m} .
$$

Consequently, the cross-sectional area of the beam is

$$
\begin{equation*}
A(\bar{x})=b h_{m} f(\bar{x})=A_{m} f(\bar{x}), \quad A_{m}=b h_{m}, \tag{3a}
\end{equation*}
$$

and the moment of inertia is given by

$$
\begin{equation*}
I(\bar{x})=b h_{m}^{3} f^{3}(\bar{x}) / 12=I_{m} f^{3}(\bar{x}), \quad I_{m}=b h_{m}^{3} / 12 \tag{3b}
\end{equation*}
$$

Three arrangements of boundary conditions will be considered: simply supported at both ends, clamped, simply supported and clamped at both ends.

Neglecting inertia effects of the load itself the governing differential system is

$$
\begin{gather*}
E \frac{\partial^{2}}{\partial \bar{x}^{2}}\left(I(\bar{x}) w_{\bar{x}^{2}}\right)+\rho A(\bar{x}) w_{t^{2}}=\delta(\bar{x}-v t) P_{0} \mathrm{e}^{-\alpha t}, \quad \alpha>0, \tag{4}\\
w(\bar{x}, 0)=w_{t}(\bar{x}, 0)=0 \tag{5}
\end{gather*}
$$

where shear and rotatory inertia effects have been disregarded since a first order approximation is being sought.

The following two sections deal (1) with an exact solution of equations (4) and (5) in the case where the beam possesses a uniform thickness and (2) an approximate solution of the problem when $h(\bar{x})$ is given by equation (2).

2. EXACT ANALYTICAL SOLUTION

Making $\gamma=1$ in equation (2) and substituting equations (2) and (3) in equation (4) results in

$$
\begin{equation*}
E I_{m} w_{\bar{x}^{4}}+\rho A_{m} w_{t^{2}}=\delta(\bar{x}-v t) P_{0} \mathrm{e}^{-\alpha t} \tag{6}
\end{equation*}
$$

Let T be the time interval needed by the load $P(t)$ to traverse the beam. Accordingly,

$$
\begin{equation*}
\delta(\bar{x}-v t)=\delta(L x-L t / T)=\delta(L(x-t / T))=\delta(x-t / T) / L \tag{7}
\end{equation*}
$$

Substituting equation (7) in equation (6) and introducing the dimensionless variable $x=\bar{x} / L$ one obtains

$$
\begin{equation*}
w_{x^{4}}+\beta_{1} w_{t^{2}}=\beta_{2} P_{0} \delta(x-t / T) \mathrm{e}^{-\alpha t} \tag{8}
\end{equation*}
$$

where

$$
\beta_{1}=\rho A_{m} L^{4} /\left(E I_{m}\right), \quad \beta_{2}=L^{3} /\left(E I_{m}\right)
$$

It is convenient to introduce the dimensionless displacement variable $u(x, t)$, where

$$
\begin{equation*}
u(x, t)=w(x, t) / w_{e} \tag{9}
\end{equation*}
$$

and where w_{e} is the maximum displacement introduced by a static load P_{0} acting at $\bar{x}=L / 2$.
Accordingly

$$
\begin{equation*}
w_{e}=P_{0} L^{3} /\left(\zeta E I_{m}\right) . \tag{10}
\end{equation*}
$$

Obviously the maximum static displacement occurs at $\bar{x}=L / 2$ for the first and third type of boundary conditions and at $\bar{x}=L(1-1 / \sqrt{5})$ when the beam is clamped-simply supported.
The values of ζ are $\zeta=48$ (simply-supported case), $\zeta=48 \sqrt{5}$ (clamped-simply supported) and $\zeta=192$ (clamped at both ends).

Substituting equation (9) in equation (8) results in

$$
\begin{equation*}
u_{x^{4}}+\beta_{1} u_{t^{2}}=\zeta \delta(x-t / T) \mathrm{e}^{-\alpha t} \tag{11}
\end{equation*}
$$

Figure 1. Vibrating system under study.

Making

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} \varphi_{n}(x) \psi_{n}(t) \tag{12}
\end{equation*}
$$

where the $\varphi_{n}(x)$'s are the normal modes of the structure, and substituting equation (12) in equation (11) results in

$$
\begin{equation*}
\psi_{n}(t)+\omega_{n}^{2} \psi_{n}(t)=k_{n} \varphi_{n}(t / T) \mathrm{e}^{-\alpha t} \tag{13}
\end{equation*}
$$

once usual normal mode operating procedures are performed and where the ω_{n} 's are the natural circular frequencies of the system and

$$
\begin{equation*}
k_{n}=\zeta /\left(\beta_{1} \int_{0}^{1} \varphi_{n}^{2}(x) \mathrm{d} x\right) \tag{14}
\end{equation*}
$$

Making

$$
\mu_{n}^{2}=\sqrt{\beta_{1}} \omega_{n}
$$

the normalized normal modes are, in the case of simply supported beams,

$$
\begin{equation*}
\varphi_{n}(x)=\sin \mu_{n} x, \quad \mu_{n}=n \pi \tag{15}
\end{equation*}
$$

In the case of clamped-simply supported and clamped-clamped beams,

$$
\begin{equation*}
\varphi_{n}(x)=\cosh \mu_{n} x-\cos \mu_{n} x-c_{n}\left(\sinh \mu_{n} x-\sin \mu_{n} x\right) \tag{16}
\end{equation*}
$$

with

$$
C_{n}=\left(\cosh \mu_{n}-\cos \mu_{n}\right) /\left(\sinh \mu_{n}-\sin \mu_{n}\right)
$$

Then, the particular solution of equation (13) is

$$
\begin{equation*}
\psi_{n P}(t)=\mathrm{e}^{-\alpha_{t}}\left(k_{1} \cosh \frac{\mu_{n} t}{T}+k_{2} \cos \frac{\mu_{n} t}{T}+k_{3} \sinh \frac{\mu_{n} t}{T}+k_{4} \sin \frac{\mu_{n} t}{T}\right) \tag{17}
\end{equation*}
$$

and the general solution of equation (13) results in

$$
\begin{equation*}
\psi_{n}(t)=C_{1 n} \cos \omega_{n} t+C_{2 n} \sin \omega_{n} t+\psi_{n P}(t) \tag{18}
\end{equation*}
$$

where $C_{1 n}$ and $C_{2 n}$ are determined using the initial conditions $\psi_{n}(0)=\dot{\psi}_{n}(0)=0$. If the beam is simply supported one has $k_{1}=k_{3}=0$; for the other types of boundary conditions the four constants are different from zero.

Finally the solutions to the posed problem is

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty}\left[C_{1 n} \cos \omega_{n} t+C_{2 n} \sin \omega_{n} t+\psi_{n P}(t)\right] \varphi_{n}(x) \tag{19}
\end{equation*}
$$

3. APPROXIMATE SOLUTION: CASE OF A BEAM OF NON-UNIFORM CROSS-SECTION

Substituting equations (3) and (9) in equation (4) and introducing the dimensionless variables $x=\bar{x} / L$ and $\tau=t / T$ one obtains

$$
\begin{equation*}
f^{3} u_{x^{4}}+6 f^{2} f^{\prime} u_{x^{3}}+3\left(f f^{\prime 2}+f^{2} f^{\prime \prime}\right) u_{x^{2}}+\frac{\beta_{1}}{T^{2}} f u_{\tau^{2}}=\zeta \delta(x-\tau) \mathrm{e}^{-\alpha T \tau} \tag{20}
\end{equation*}
$$

subject to the governing boundary and initial conditions.

Making use of the Galerkin-Kantorovich method one expresses

$$
\begin{equation*}
u \simeq u_{\alpha}=\varphi(x) \psi(\tau) \tag{21}
\end{equation*}
$$

where $\varphi(x)$ will be constructed in such a way as to satisfy the beam boundary conditions. Substituting equation (21) in equation (20) one obtains, after application of Galerkin's orthogonalization procedure,

$$
\begin{equation*}
J_{1} \ddot{\psi}(\tau)+J_{2} \psi(\tau)=\zeta \mathrm{e}^{-\alpha T \tau} \varphi(\tau) \tag{22}
\end{equation*}
$$

where

$$
J_{1}=\frac{\beta_{1}}{T^{2}} \int_{0}^{1} f \varphi^{2} \mathrm{~d} x, \quad J_{2}=\int_{0}^{1}\left[f^{3} \varphi^{I V}+6 f^{2} f^{\prime} \varphi^{\prime \prime \prime}+3\left(f f^{\prime 2}+f^{2} f^{\prime \prime}\right) \varphi^{\prime \prime}\right] \varphi \mathrm{d} x
$$

It is convenient to express $\varphi(x)$ in the form

$$
\begin{equation*}
\varphi(x)=x^{4}+\alpha_{3} x^{3}+\alpha_{2} x^{2}+\alpha_{1} x \tag{23}
\end{equation*}
$$

where the α_{i} 's are obtained by substituting equation (23) in the boundary conditions [9-11]. The particular solution of equation (22) is

$$
\begin{equation*}
\psi_{P}(\tau)=\mathrm{e}^{-\alpha T \tau}\left(k_{4} \tau^{4}+k_{3} \tau^{3}+k_{2} \tau^{2}+k_{1} \tau+k_{0}\right) \tag{24}
\end{equation*}
$$

and its general solution becomes

$$
\begin{equation*}
\psi(\tau)=C_{1} \cos v \tau+C_{2} \sin v \tau+\psi_{P}(\tau), \quad v=\sqrt{J_{2} / J_{1}} \tag{25}
\end{equation*}
$$

where C_{1} and C_{2} are determined applying the boundary conditions.

4. RESULTS AND CONCLUSIONS

Numerical experiments have been performed making $\beta_{1}=0.02$ and 0.35 . With regards to the acting force $P(t)=P_{0} \mathrm{e}^{-\alpha t}$ three situations have been considered: constant value $(\alpha=0) ; P(T) / P_{0}=0 \cdot 70, \alpha=0 \cdot 118892(T=3 \mathrm{~s}) ; P(T) / P_{0}=0 \cdot 30, \alpha=0.401324(T=3 \mathrm{~s})$. The values of $u(x, t)$ have been plotted as a function of t at the beam center for the simply supported and clamped cases at both ends, and at $x=1-1 / \sqrt{5}$ for the clamped-simply supported situation.

Figures $2-5$ deal with beams of uniform thickness. Figures 2 and 3 depict values of $u(x, t)$ for the simply supported case for $\beta_{1}=0.02$ and $0 \cdot 35$, respectively, while Figures 4 and 5 show results for the clamped-simply supported and clamped-clamped situations, respectively, for $\beta_{1}=0.02$. No significant variations were observed for the cases treated in Figures 4 and 5 when β_{1} was taken equal to $0 \cdot 35$.

Good agreement is observed between the exact values and those obtained by means of the variational approach (six terms were employed when using the exact, normal mode approach).

Figures 6-9 deal with beams of non-uniform thickness $(\gamma=1 \cdot 30)$. All calculations have been performed for $T=3 \mathrm{~s} ; \beta_{1}=0.02$ and 0.35 . It is again observed, when performing the numerical determinations, that in the case of clamped-simply supported and clamped-clamped ends practically the same results are obtained for $\beta_{1}=0.02$ and $\beta_{1}=0 \cdot 35$.

The proposed approach is quite simple and straightforward. The cases of ends elastically restrained against translation and rotation do not offer any conceptual and/or operational difficulties.

Figure 2. Plot of $u(0 \cdot 5, t)$ in the case of a simply supported beam $\left(\beta_{1}=0 \cdot 02, \gamma=1\right)$: —, exact solution; \bigcirc, variational solution; $p=P(T) / P_{0}$.

Figure 3. Plot of $u(0 \cdot 5, t)$ in the case of a simply supported beam $\left(\beta_{1}=0 \cdot 35, \gamma=1\right)$: - , exact solution; \bigcirc, variational solution.

Figure 4. Plot of $u(1-1 \sqrt{5}, t)$ in the case of a clamped-simply supported beam $\left(\beta_{1}=0 \cdot 02, \gamma=1\right):-$ exact solution; \bigcirc, variational approach.

Figure 5. Plot of $u(0 \cdot 5, t)$ in the case of a clamped-clamped beam $\left(\beta_{1}=0 \cdot 02, \gamma=1\right)$:- , exact solution; \bigcirc, variational solution.
t

Figure 6. Plot of $u(0 \cdot 5, t)$ in the case of a simply supported beam of non-uniform thickness $\left(\beta_{1}=0 \cdot 021\right.$, $\gamma=1 \cdot 30$).

Figure 7. Plot of $u(0 \cdot 5, t)$ in the case of a simply supported beam of non-uniform thickness $\left(\beta_{1}=0 \cdot 35\right.$, $\gamma=1 \cdot 30$).

Figure 8. Plot of $u(1-1 / \sqrt{5}, t)$ in the case of a clamped-simply supported beam of non-uniform thickness ($\beta_{1}=0.02, \gamma=1 \cdot 30$).

Figure 9. Plot of $u(0.5, t)$ in the case of a clamped-clamped beam of non-uniform thickness ($\beta_{1}=0.02$, $\gamma=1 \cdot 30$).

ACKNOWLEDGMENTS

The present study has been sponsored by CONICET Research and Development Program (PIA 1996-1997) and by Secretaría General de Ciencia y Tecnología of the Universidad Nacional del Sur.

REFERENCES

1. S. Timoshenko 1955 Vibration Problems in Engineering. Third edition. New York, N.Y.: D. Van Nostrand.
2. E. Volterra and E. C. Zachmanoglou 1965 Dynamics of Vibrations. Columbus, Ohio: C. E. Merril Books.
3. L. Fríba 1972 Vibrations of Solids and Structures under Moving Loads. Gröningen: Noordhoff International.
4. M. Géradin and D. Rixen 1994 Mechanical Vibrations. New York, Paris: Wiley-Masson.
5. A. Dimarogonas 1996 Vibration for Engineers. Second edition. Englewood Cliffs, New Jersey: Prentice Hall.
6. M. M. Stanisic and J. C. Hardin 1967 Journal of the Franklin Institute 287, 115-123. On the response of beams to an arbitrary number of concentrated moving masses.
7. M. M. Stanisic, J. A. Euler and S. T. Montgomery 1974 Ingenieur-Archive 43, 295-305. On a theory concerning the dynamical behavior of structures carrying moving masses.
8. F. Khalily, M. F. Golnaraghi and G. R. Heppler 1994 Nonlinear Dynamics 5, 493-513. On the dynamic behavior of a flexible beam carrying a moving mass.
9. P. A. A. Laura and B. F. Saffel 1967 The Journal of the Acoustical Society of America 41, 836-838. Study of small amplitude vibrations of clamped rectangular plates using polynomial approximations.
10. P. A. A. Laura and E. Romanelli 1974 Journal of Sound and Vibration 37, 367-377. Vibrations of rectangular plates elastically restrained against rotation and subjected to a bi-axial state of stress.
11. R. H. Gutierrez and P. A. A. Laura 1996 Journal of Sound and Vibration 195, 353-358. Transverse vibrations of beams traversed by point masses: a general approximate solution.
