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1. 

The analysis of the dynamic behavior of structural elements traversed by moving forces
or masses is certainly a classical problem which has attracted the attention of many
researchers. The reader is referred to comprehensive listing of references available in well
known textbooks and papers [1–8]. In general the investigations have been motivated by
the necessity of evaluating the dynamic behavior of a bridge travelled by a car or of rails
travelled by a train.

The present paper, considerable more modest in its scope, deals with the approximate
determination of the transverse response of the structural system depicted in Figure 1 as
a load

P(t)=P0 e−at (1)

which travels at constant speed, v, along the beam. The beam, of constant width b, is
characterized by a parabolically varying thickness given by

h(x̄)= hmf(x̄)= hm [4(g−1)(x̄2/L2 − x̄/L)+ g], (2)

where

g= h(0)/hm .

Consequently, the cross-sectional area of the beam is

A(x̄)= bhmf(x̄)=Amf(x̄), Am = bhm , (3a)

and the moment of inertia is given by

I(x̄)= bh3
m f 3(x̄)/12= Im f 3(x̄), Im = bh3

m/12. (3b)

Three arrangements of boundary conditions will be considered: simply supported at both
ends, clamped, simply supported and clamped at both ends.

Neglecting inertia effects of the load itself the governing differential system is

E
12

1x̄2 (I(x̄)wx̄2)+ rA(x̄)wt2 = d(x̄− vt)P0 e−at, aq 0, (4)

w(x̄, 0)=wt (x̄, 0)=0, (5)

where shear and rotatory inertia effects have been disregarded since a first order
approximation is being sought.

0022–460X/97/430419+07 $25.00/0/sv971164 7 1997 Academic Press Limited



vt

v (const.)

b (const.)

h (x)

Lhm
O

P0e–αt

x

   420

The following two sections deal (1) with an exact solution of equations (4) and (5) in
the case where the beam possesses a uniform thickness and (2) an approximate solution
of the problem when h(x̄) is given by equation (2).

2.   

Making g=1 in equation (2) and substituting equations (2) and (3) in equation (4)
results in

EImwx̄4 + rAmwt2 = d(x̄− vt)P0 e−at. (6)

Let T be the time interval needed by the load P(t) to traverse the beam. Accordingly,

d(x̄− vt)= d(Lx−Lt/T)= d(L(x− t/T))= d(x− t/T)/L. (7)

Substituting equation (7) in equation (6) and introducing the dimensionless variable
x= x̄/L one obtains

wx4 + b1wt2 = b2P0d(x− t/T) e−at, (8)

where

b1 = rAmL4/(EIm ), b2 =L3/(EIm ).

It is convenient to introduce the dimensionless displacement variable u(x, t), where

u(x, t)=w(x, t)/we (9)

and where we is the maximum displacement introduced by a static load P0 acting at
x̄=L/2.
Accordingly

we =P0L3/(zEIm ). (10)

Obviously the maximum static displacement occurs at x̄=L/2 for the first and third type
of boundary conditions and at x̄=L(1−1/z5) when the beam is clamped–simply
supported.

The values of z are z=48 (simply-supported case), z=48z5 (clamped–simply
supported) and z=192 (clamped at both ends).

Substituting equation (9) in equation (8) results in

ux4 + b1ut2 = zd(x− t/T) e−at. (11)

Figure 1. Vibrating system under study.
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Making

u(x, t)= s
a

n=1

8n (x)cn (t), (12)

where the 8n (x)’s are the normal modes of the structure, and substituting equation (12)
in equation (11) results in

cn (t)+v2
ncn (t)= kn8n (t/T) e−at (13)

once usual normal mode operating procedures are performed and where the vn’s are the
natural circular frequencies of the system and

kn = z>0b1 g
1

0

82
n(x) dx1. (14)

Making

m2
n =zb1vn ,

the normalized normal modes are, in the case of simply supported beams,

8n (x)= sin mnx, mn = np. (15)

In the case of clamped–simply supported and clamped–clamped beams,

8n (x)= cosh mnx−cos mnx− cn (sinh mnx−sin mnx), (16)

with

Cn =(cosh mn −cos mn )/(sinh mn −sin mn ).

Then, the particular solution of equation (13) is

cnP (t)= e−at0k1 cosh
mnt
T

+ k2 cos
mnt
T

+ k3 sinh
mnt
T

+ k4 sin
mnt
T 1 (17)

and the general solution of equation (13) results in

cn (t)=C1n cos vnt+C2n sin vnt+cnP (t), (18)

where C1n and C2n are determined using the initial conditions cn (0)=c� n(0)=0. If the beam
is simply supported one has k1 = k3 =0; for the other types of boundary conditions the
four constants are different from zero.

Finally the solutions to the posed problem is

u(x, t)= s
a

n=1

[C1n cos vnt+C2n sin vnt+cnP (t)]8n (x). (19)

3.  :      - -

Substituting equations (3) and (9) in equation (4) and introducing the dimensionless
variables x= x̄/L and t= t/T one obtains

f 3ux4 +6f 2f 'ux3 +3(ff '2 + f 2f 0)ux2 +
b1

T2 fut2 = zd(x− t) e−aTt, (20)

subject to the governing boundary and initial conditions.
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Making use of the Galerkin–Kantorovich method one expresses

u2 ua =8(x)c(t), (21)

where 8(x) will be constructed in such a way as to satisfy the beam boundary conditions.
Substituting equation (21) in equation (20) one obtains, after application of Galerkin’s
orthogonalization procedure,

J1c� (t)+ J2c(t)= z e−aTt8(t), (22)

where

J1 =
b1

T2 g
1

0

f82 dx, J2 =g
1

0

[f 38IV +6f 2f '81+3(ff '2 + f 2f 0)80]8 dx.

It is convenient to express 8(x) in the form

8(x)= x4 + a3x3 + a2x2 + a1x, (23)

where the ai’s are obtained by substituting equation (23) in the boundary conditions [9–11].
The particular solution of equation (22) is

cP (t)= e−aTt(k4t
4 + k3t

3 + k2t
2 + k1t+ k0) (24)

and its general solution becomes

c(t)=C1 cos nt+C2 sin nt+cP (t), n=zJ2/J1, (25)

where C1 and C2 are determined applying the boundary conditions.

4.   

Numerical experiments have been performed making b1 =0·02 and 0·35. With regards
to the acting force P(t)=P0 e−at three situations have been considered: constant value
(a=0); P(T)/P0 =0·70, a=0·118892 (T=3 s); P(T)/P0 =0·30, a=0·401324 (T=3 s).
The values of u(x, t) have been plotted as a function of t at the beam center for the simply
supported and clamped cases at both ends, and at x=1−1/z5 for the clamped–simply
supported situation.

Figures 2–5 deal with beams of uniform thickness. Figures 2 and 3 depict values of
u(x, t) for the simply supported case for b1 =0·02 and 0·35, respectively, while Figures 4
and 5 show results for the clamped–simply supported and clamped–clamped situations,
respectively, for b1 =0·02. No significant variations were observed for the cases treated
in Figures 4 and 5 when b1 was taken equal to 0·35.

Good agreement is observed between the exact values and those obtained by means of
the variational approach (six terms were employed when using the exact, normal mode
approach).

Figures 6–9 deal with beams of non-uniform thickness (g=1·30). All calculations have
been performed for T=3 s; b1 =0·02 and 0·35. It is again observed, when performing the
numerical determinations, that in the case of clamped–simply supported and
clamped–clamped ends practically the same results are obtained for b1 =0·02 and
b1 =0·35.

The proposed approach is quite simple and straightforward. The cases of ends elastically
restrained against translation and rotation do not offer any conceptual and/or operational
difficulties.
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Figure 2. Plot of u (0·5, t) in the case of a simply supported beam (b1 =0·02, g=1): ——, exact solution;
w, variational solution; p=P(T )/P0.

Figure 3. Plot of u (0·5, t) in the case of a simply supported beam (b1 =0·35, g=1): ——, exact solution;
w, variational solution.

Figure 4. Plot of u (1−1z5, t) in the case of a clamped–simply supported beam (b1 =0·02, g=1): ——,
exact solution; w, variational approach.
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Figure 5. Plot of u (0·5, t) in the case of a clamped–clamped beam (b1 =0·02, g=1): ——, exact solution;
w, variational solution.

Figure 6. Plot of u (0·5, t) in the case of a simply supported beam of non-uniform thickness (b1 =0·021,
g=1·30).

Figure 7. Plot of u (0·5, t) in the case of a simply supported beam of non-uniform thickness (b1 =0·35,
g=1·30).
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Figure 8. Plot of u (1−1/z5, t) in the case of a clamped–simply supported beam of non-uniform thickness
(b1 =0·02, g=1·30).

Figure 9. Plot of u (0·5, t) in the case of a clamped–clamped beam of non-uniform thickness (b1 =0·02,
g=1·30).
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